Cargando…

Frequency-Domain-Based Structure Losses for CycleGAN-Based Cone-Beam Computed Tomography Translation

Research exploring CycleGAN-based synthetic image generation has recently accelerated in the medical community due to its ability to leverage unpaired images effectively. However, a commonly established drawback of the CycleGAN, the introduction of artifacts in generated images, makes it unreliable...

Descripción completa

Detalles Bibliográficos
Autores principales: Pai, Suraj, Hadzic, Ibrahim, Rao, Chinmay, Zhovannik, Ivan, Dekker, Andre, Traverso, Alberto, Asteriadis, Stylianos, Hortal, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920313/
https://www.ncbi.nlm.nih.gov/pubmed/36772129
http://dx.doi.org/10.3390/s23031089
Descripción
Sumario:Research exploring CycleGAN-based synthetic image generation has recently accelerated in the medical community due to its ability to leverage unpaired images effectively. However, a commonly established drawback of the CycleGAN, the introduction of artifacts in generated images, makes it unreliable for medical imaging use cases. In an attempt to address this, we explore the effect of structure losses on the CycleGAN and propose a generalized frequency-based loss that aims at preserving the content in the frequency domain. We apply this loss to the use-case of cone-beam computed tomography (CBCT) translation to computed tomography (CT)-like quality. Synthetic CT (sCT) images generated from our methods are compared against baseline CycleGAN along with other existing structure losses proposed in the literature. Our methods (MAE: 85.5, MSE: 20433, NMSE: 0.026, PSNR: 30.02, SSIM: 0.935) quantitatively and qualitatively improve over the baseline CycleGAN (MAE: 88.8, MSE: 24244, NMSE: 0.03, PSNR: 29.37, SSIM: 0.935) across all investigated metrics and are more robust than existing methods. Furthermore, no observable artifacts or loss in image quality were observed. Finally, we demonstrated that sCTs generated using our methods have superior performance compared to the original CBCT images on selected downstream tasks.