Cargando…
SAR Target Recognition with Limited Training Samples in Open Set Conditions
It is difficult to collect training samples for all types of synthetic aperture radar (SAR) targets. A realistic problem comes when unseen categories exist that are not included in training and benchmark data at the time of recognition, which is defined as open set recognition (OSR). Without the aid...
Autores principales: | Zhou, Xiangyu, Zhang, Yifan, Liu, Di, Wei, Qianru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920332/ https://www.ncbi.nlm.nih.gov/pubmed/36772708 http://dx.doi.org/10.3390/s23031668 |
Ejemplares similares
-
Multi-Aspect SAR Target Recognition Based on Prototypical Network with a Small Number of Training Samples
por: Zhao, Pengfei, et al.
Publicado: (2021) -
Automated Recognition of Retinal Pigment Epithelium Cells on Limited Training Samples Using Neural Networks
por: Gao, Qitong, et al.
Publicado: (2020) -
What’s new in sepsis recognition in resource-limited settings?
por: Kwizera, Arthur, et al.
Publicado: (2016) -
Target Recognition in SAR Images by Deep Learning with Training Data Augmentation
por: Geng, Zhe, et al.
Publicado: (2023) -
Robust tactile object recognition in open-set scenarios using Gaussian prototype learning
por: Zheng, Wendong, et al.
Publicado: (2022)