Cargando…
LRF-SRNet: Large-Scale Super-Resolution Network for Estimating Aircraft Pose on the Airport Surface
The introduction of various deep neural network architectures has greatly advanced aircraft pose estimation using high-resolution images. However, realistic airport surface monitors typically take low-resolution (LR) images, and the results of the aircraft pose estimation are far from being accurate...
Autores principales: | Yuan, Xinyang, Fu, Daoyong, Han, Songchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920384/ https://www.ncbi.nlm.nih.gov/pubmed/36772287 http://dx.doi.org/10.3390/s23031248 |
Ejemplares similares
-
Med-SRNet: GAN-Based Medical Image Super-Resolution via High-Resolution Representation Learning
por: Zhang, Lina, et al.
Publicado: (2022) -
The Influence of the Aircraft Operating Fluids on the Mechanical Parameters of the Airport Surface Concrete
por: Żebrowski, Wojciech, et al.
Publicado: (2020) -
Pixels2Pose: Super-resolution time-of-flight imaging for 3D pose estimation
por: Ruget, Alice, et al.
Publicado: (2022) -
Aircraft Noise and Quality of Life around Frankfurt Airport
por: Schreckenberg, Dirk, et al.
Publicado: (2010) -
Aircraft Pose Estimation Based on Geometry Structure Features and Line Correspondences
por: Teng, Xichao, et al.
Publicado: (2019)