Cargando…
Chloroplast Envelopes Play a Role in the Formation of Autophagy-Related Structures in Plants
Autophagy is a degradation process of cytoplasmic components that is conserved in eukaryotes. One of the hallmark features of autophagy is the formation of double-membrane structures known as autophagosomes, which enclose cytoplasmic content destined for degradation. Although the membrane source for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920391/ https://www.ncbi.nlm.nih.gov/pubmed/36771525 http://dx.doi.org/10.3390/plants12030443 |
Sumario: | Autophagy is a degradation process of cytoplasmic components that is conserved in eukaryotes. One of the hallmark features of autophagy is the formation of double-membrane structures known as autophagosomes, which enclose cytoplasmic content destined for degradation. Although the membrane source for the formation of autophagosomes remains to be determined, recent studies indicate the involvement of various organelles in autophagosome biogenesis. In this study, we examined the autophagy process in Bienertia sinuspersici: one of four terrestrial plants capable of performing C(4) photosynthesis in a single cell (single-cell C(4) species). We demonstrated that narrow tubules (stromule-like structures) 30–50 nm in diameter appear to extend from chloroplasts to form the membrane-bound structures (autophagosomes or autophagy-related structures) in chlorenchyma cells of B. sinuspersici during senescence and under oxidative stress. Immunoelectron microscopic analysis revealed the localization of stromal proteins to the stromule-like structures, sequestering portions of the cytoplasm in chlorenchyma cells of oxidative stress-treated leaves of B. sinuspersici and Arabidopsis thaliana. Moreover, the fluorescent marker for autophagosomes GFP-ATG8, colocalized with the autophagic vacuole maker neutral red in punctate structures in close proximity to the chloroplasts of cells under oxidative stress conditions. Together our results implicate a role for chloroplast envelopes in the autophagy process induced during senescence or under certain stress conditions in plants. |
---|