Cargando…
On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond
A Network Digital Twin (NDT) is a high-fidelity digital mirror of a real network. Given the increasing complexity of 5G and beyond networks, the use of an NDT becomes useful as a platform for testing configurations and algorithms prior to their application in the real network, as well as for predict...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920407/ https://www.ncbi.nlm.nih.gov/pubmed/36772235 http://dx.doi.org/10.3390/s23031197 |
_version_ | 1784887062539796480 |
---|---|
author | Vilà, Irene Sallent, Oriol Pérez-Romero, Jordi |
author_facet | Vilà, Irene Sallent, Oriol Pérez-Romero, Jordi |
author_sort | Vilà, Irene |
collection | PubMed |
description | A Network Digital Twin (NDT) is a high-fidelity digital mirror of a real network. Given the increasing complexity of 5G and beyond networks, the use of an NDT becomes useful as a platform for testing configurations and algorithms prior to their application in the real network, as well as for predicting the performance of such algorithms under different conditions. While an NDT can be defined for the different subsystems of the network, this paper proposes an NDT architecture focusing on the Radio Access Network (RAN), describing the components to represent and model the operation of the different RAN elements, and to perform emulations. Different application use cases are identified, and among them, the paper puts the focus on the training of Reinforcement Learning (RL) solutions for the RAN. For this use case, the paper introduces a framework aligned with O-RAN specifications and discusses the functionalities needed to integrate the NDT. This use case is illustrated with the description of a RAN NDT implementation used for training an RL-based capacity-sharing solution for network slicing. Presented results demonstrate that the implemented RAN NDT is a suitable platform to successfully train the RL solution, achieving service-level agreement satisfaction values above 85%. |
format | Online Article Text |
id | pubmed-9920407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99204072023-02-12 On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond Vilà, Irene Sallent, Oriol Pérez-Romero, Jordi Sensors (Basel) Article A Network Digital Twin (NDT) is a high-fidelity digital mirror of a real network. Given the increasing complexity of 5G and beyond networks, the use of an NDT becomes useful as a platform for testing configurations and algorithms prior to their application in the real network, as well as for predicting the performance of such algorithms under different conditions. While an NDT can be defined for the different subsystems of the network, this paper proposes an NDT architecture focusing on the Radio Access Network (RAN), describing the components to represent and model the operation of the different RAN elements, and to perform emulations. Different application use cases are identified, and among them, the paper puts the focus on the training of Reinforcement Learning (RL) solutions for the RAN. For this use case, the paper introduces a framework aligned with O-RAN specifications and discusses the functionalities needed to integrate the NDT. This use case is illustrated with the description of a RAN NDT implementation used for training an RL-based capacity-sharing solution for network slicing. Presented results demonstrate that the implemented RAN NDT is a suitable platform to successfully train the RL solution, achieving service-level agreement satisfaction values above 85%. MDPI 2023-01-20 /pmc/articles/PMC9920407/ /pubmed/36772235 http://dx.doi.org/10.3390/s23031197 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vilà, Irene Sallent, Oriol Pérez-Romero, Jordi On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond |
title | On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond |
title_full | On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond |
title_fullStr | On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond |
title_full_unstemmed | On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond |
title_short | On the Design of a Network Digital Twin for the Radio Access Network in 5G and Beyond |
title_sort | on the design of a network digital twin for the radio access network in 5g and beyond |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920407/ https://www.ncbi.nlm.nih.gov/pubmed/36772235 http://dx.doi.org/10.3390/s23031197 |
work_keys_str_mv | AT vilairene onthedesignofanetworkdigitaltwinfortheradioaccessnetworkin5gandbeyond AT sallentoriol onthedesignofanetworkdigitaltwinfortheradioaccessnetworkin5gandbeyond AT perezromerojordi onthedesignofanetworkdigitaltwinfortheradioaccessnetworkin5gandbeyond |