Cargando…
Multi-Input Speech Emotion Recognition Model Using Mel Spectrogram and GeMAPS
The existing research on emotion recognition commonly uses mel spectrogram (MelSpec) and Geneva minimalistic acoustic parameter set (GeMAPS) as acoustic parameters to learn the audio features. MelSpec can represent the time-series variations of each frequency but cannot manage multiple types of audi...
Autores principales: | Toyoshima, Itsuki, Okada, Yoshifumi, Ishimaru, Momoko, Uchiyama, Ryunosuke, Tada, Mayu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920472/ https://www.ncbi.nlm.nih.gov/pubmed/36772782 http://dx.doi.org/10.3390/s23031743 |
Ejemplares similares
-
A New Regression Model for Depression Severity Prediction Based on Correlation among Audio Features Using a Graph Convolutional Neural Network
por: Ishimaru, Momoko, et al.
Publicado: (2023) -
Classification of Depression and Its Severity Based on Multiple Audio Features Using a Graphical Convolutional Neural Network
por: Ishimaru, Momoko, et al.
Publicado: (2023) -
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
Identifying Voice Individuality Unaffected by Age-Related Voice Changes during Adolescence
por: Suzuki, Natsumi, et al.
Publicado: (2022) -
3D CNN-Based Speech Emotion Recognition Using K-Means Clustering and Spectrograms
por: Hajarolasvadi, Noushin, et al.
Publicado: (2019)