Cargando…
Zeta Potential of Nanosilica in 50% Aqueous Ethylene Glycol and in 50% Aqueous Propylene Glycol
A sufficient amount of ionic surfactants may induce a zeta potential of silica particles dispersed in water–glycol mixtures of about 100 mV in absolute value. Nanoparticles of silica were dispersed in 50-50 ethylene glycol (EG)–water and 50-50 propylene glycol (PG)–water mixtures, and the zeta poten...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920482/ https://www.ncbi.nlm.nih.gov/pubmed/36771002 http://dx.doi.org/10.3390/molecules28031335 |
Sumario: | A sufficient amount of ionic surfactants may induce a zeta potential of silica particles dispersed in water–glycol mixtures of about 100 mV in absolute value. Nanoparticles of silica were dispersed in 50-50 ethylene glycol (EG)–water and 50-50 propylene glycol (PG)–water mixtures, and the zeta potential was studied as a function of acid, base, and surfactant concentrations. The addition of HCl had a limited effect on the zeta potential. The addition of NaOH in excess of 10(−5) M induced a zeta potential of about −80 mV in 50% EG, but in 50% PG the effect of NaOH was less significant. The addition of CTMABr in excess of 10(−3) M induced a zeta potential of about +100 mV in 50% EG and in 50% PG. The addition of SDS in excess of 10(−3) M induced a zeta potential of about −80 mV in 50% EG and in 50% PG. Long-chained analogs of SDS were even more efficient than SDS, but their application is limited by their low solubility in aqueous glycols. |
---|