Cargando…

Load-Oriented Nonplanar Additive Manufacturing Method for Optimized Continuous Carbon Fiber Parts

The process of the additive manufacturing (AM) of carbon-fiber-reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM) has seen considerable research in recent years, which amplifies the importance of adapted slicing and pathplanning methods. In particular, load-orien...

Descripción completa

Detalles Bibliográficos
Autores principales: Kipping, Johann, Schüppstuhl, Thorsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920591/
https://www.ncbi.nlm.nih.gov/pubmed/36770006
http://dx.doi.org/10.3390/ma16030998
Descripción
Sumario:The process of the additive manufacturing (AM) of carbon-fiber-reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM) has seen considerable research in recent years, which amplifies the importance of adapted slicing and pathplanning methods. In particular, load-oriented techniques are of high interest when employing carbon fiber materials, as classical methods, such as tape-laying and laminating, struggle with highly curved and complex geometries and require the costly production of molds. While there have been some promising propositions in this field, most have restricted themselves to a planar slicing approach, which severely limits the ability to place the fibers along stress paths. In this paper, a nonplanar slicing approach is presented that utilizes principal stress directions to construct optimized nonplanar constituting layers on which pathplanning can be carried out. These layers are oriented such that the effect of the weak interlayer adhesion is minimized. Support material is adaptively generated to enable the use of arbitrary part geometry. Furthermore, a continuous pathplanning method and post-processor are applied to yield manufacturing instructions. The approach is verified for its viability of application through experimental investigation on a multi-axis robotic 3D printer. This constitutes an important step in allowing the fabrication of CFRP parts to further utilize the possibilities of additive manufacturing.