Cargando…

A Novel Photocatalytic Functional Coating Applied to the Degradation of Xylene in Coating Solvents under Solar Irradiation

A novel photocatalytic functional coating was prepared with g-C(3)N(4)/TiO(2) composites as the photocatalytic active component modified by dielectric barrier discharge (DBD), and it showed an efficient catalytic performance under solar light irradiation. The degradation of xylene released from fluo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Luying, Tan, Yujie, Xu, Hui, Shu, Ruchen, Liu, Zhi, Zhang, Ruina, Hou, Jianyuan, Zhang, Renxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920615/
https://www.ncbi.nlm.nih.gov/pubmed/36770531
http://dx.doi.org/10.3390/nano13030570
Descripción
Sumario:A novel photocatalytic functional coating was prepared with g-C(3)N(4)/TiO(2) composites as the photocatalytic active component modified by dielectric barrier discharge (DBD), and it showed an efficient catalytic performance under solar light irradiation. The degradation of xylene released from fluorocarbon coating solvents by the g-C(3)N(4)/TiO(2) composite coatings was investigated under simulated solar irradiation. The degradation efficiency of the coating mixed with DBD-modified 10%-g-C(3)N(4)/TiO(2) showed a stable, long-lasting, and significantly higher activity compared to the coatings mixed with the unmodified catalyst. Ninety-eight percent of the xylene released from fluorocarbon coating solvents was successfully removed under solar light irradiation in 2 h. The properties of the catalyst samples before and after modification were evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible (UV–vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), and other characterization techniques. The results suggested that DBD-modified g-C(3)N(4)/TiO(2) showed an improved capture ability and utilization efficiency of solar light with reduced band gap and lower complexation rate of electron–hole pairs. The prepared photocatalytic coating offers an environmentally friendly approach to purify the volatile organic compounds (VOCs) released from solvent-based coatings.