Cargando…

5-Aminolevulinic Acid Induces Chromium [Cr(VI)] Tolerance in Tomatoes by Alleviating Oxidative Damage and Protecting Photosystem II: A Mechanistic Approach

Chromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tole...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaya, Cengiz, Ugurlar, Ferhat, Ashraf, Muhammed, Alyemeni, Mohammed Nasser, Moustakas, Michael, Ahmad, Parvaiz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920640/
https://www.ncbi.nlm.nih.gov/pubmed/36771587
http://dx.doi.org/10.3390/plants12030502
Descripción
Sumario:Chromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tolerance to Cr(VI) toxicity through the foliar application of 5-ALA for three days, fifteen days before Cr treatment. Chromium alone decreased plant biomass and photosynthetic pigments, but increased oxidative stress markers, i.e., H(2)O(2) and lipid peroxidation (as MDA equivalent). Electrolyte leakage (EL), NO, nitrate reductase (NR), phytochelatins (PCs), glutathione (GSH), and enzymatic and non-enzymatic antioxidants were also increased. Foliar application of 5-ALA before Cr treatment improved plant growth and photosynthetic pigments, diminished H(2)O(2), MDA content, and EL, and resulted in additional enhancements of enzymatic and non-enzymatic antioxidants, NR activity, and NO synthesis. In Cr-treated tomato seedlings, 5-ALA enhanced GSH and PCs, which modulated Cr sequestration to make it nontoxic. 5-ALA-induced Cr tolerance was further enhanced by sodium nitroprusside (SNP), a NO donor. When sodium tungstate (ST), a NR inhibitor, was supplied together with 5-ALA to Cr-treated plants, it eliminated the beneficial effects of 5-ALA by decreasing NR activity and NO synthesis, while the addition of SNP inverted the adverse effects of ST. We conclude that the mechanism by which 5-ALA induced Cr tolerance in tomato seedlings is mediated by NR-generated NO. Thus, NR and NO are twin players, reducing Cr toxicity in tomato plants via antioxidant signalling cascades.