Cargando…
k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition
The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature s...
Autores principales: | Barioul, Rim, Kanoun, Olfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920645/ https://www.ncbi.nlm.nih.gov/pubmed/36772136 http://dx.doi.org/10.3390/s23031096 |
Ejemplares similares
-
An Embedded ANN Raspberry PI for Inertial Sensor Based Human Activity Recognition
por: Jmal, Achraf, et al.
Publicado: (2020) -
A Machine Learning Processing Pipeline for Reliable Hand Gesture Classification of FMG Signals with Stochastic Variance
por: Asfour, Mohammed, et al.
Publicado: (2021) -
Developing and implementing the strategy of FMG
por: Tuominen, Kari
Publicado: (2016) -
A Way of Bionic Control Based on EI, EMG, and FMG Signals
por: Briko, Andrey, et al.
Publicado: (2021) -
An Ultra-Sensitive Modular Hybrid EMG–FMG Sensor with Floating Electrodes
por: Ke, Ang, et al.
Publicado: (2020)