Cargando…
Ionic Liquid-Dispersive Micro-Extraction and Detection by High Performance Liquid Chromatography–Mass Spectrometry for Antifouling Biocides in Water
A simple analytical method was developed and evaluated for the determination of two antifouling biocides using an ionic liquid-dispersive liquid–liquid micro-extraction (IL-DLLME) and a high-performance liquid chromatography–electrospray ionization mass spectrometry (LC-ESI-MS) analysis. Irgarol 105...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920688/ https://www.ncbi.nlm.nih.gov/pubmed/36770930 http://dx.doi.org/10.3390/molecules28031263 |
Sumario: | A simple analytical method was developed and evaluated for the determination of two antifouling biocides using an ionic liquid-dispersive liquid–liquid micro-extraction (IL-DLLME) and a high-performance liquid chromatography–electrospray ionization mass spectrometry (LC-ESI-MS) analysis. Irgarol 1051 and Sea-Nine 211 were extracted from deionized water, lake water, and seawater using IL 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIm][PF6]) and ethyl acetate as the extraction solvent and the dispersion solvent. Several factors were considered, including the type and volume of extraction and dispersive solvent, IL amount, sample pH, salt effect, and cooling temperature. The developed method resulted in a recovery range of 78.7–90.3%, with a relative standard deviation (RSD, n = 3) less than 7.5%. The analytes were enriched greater than 40-fold, and the limits of detection (LOD) for two antifouling biocides were 0.01–0.1 μg L(−1). The method was effectively applied for the analysis of real samples of freshwater as well as samples of seawater. |
---|