Cargando…

Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures

Dielectric sensing based on capacitive measurement technology is a favourable measurement approach in many industries and fields of application. From an electrical point of view, a coupling capacitance must be measured in the presence of stray capacitances. Different receiver circuit structures have...

Descripción completa

Detalles Bibliográficos
Autores principales: Flatscher, Matthias, Neumayer, Markus, Bretterklieber, Thomas, Wegleiter, Hannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920718/
https://www.ncbi.nlm.nih.gov/pubmed/36772186
http://dx.doi.org/10.3390/s23031148
_version_ 1784887138835234816
author Flatscher, Matthias
Neumayer, Markus
Bretterklieber, Thomas
Wegleiter, Hannes
author_facet Flatscher, Matthias
Neumayer, Markus
Bretterklieber, Thomas
Wegleiter, Hannes
author_sort Flatscher, Matthias
collection PubMed
description Dielectric sensing based on capacitive measurement technology is a favourable measurement approach in many industries and fields of application. From an electrical point of view, a coupling capacitance must be measured in the presence of stray capacitances. Different receiver circuit structures have been proposed for the underlying displacement current measurement. Ideally, the sensor assembly is directly connected to the sensor circuitry to minimize the influence with respect to these parasitic capacitances. However, under harsh operating conditions, e.g., at high temperatures, the sensor and the receiver circuit must be separated in order to protect the electronics. Consequently, the receiver circuit and the sensor have to be connected by cables, e.g., coaxial cables. The measurement setup differs significantly from the ideal design with a direct connection. In this paper, we investigate the behaviour of three common measurement circuits for capacitive measurements in instrumentations with cables. We study the interaction between the sensor and the electronics and analyse the operating behaviour of the circuit, as well as the operating states of the amplifiers used. We also address cross-sensitivities in the sensor design due to stray capacitances. The analyses are carried out for different cable lengths and measuring frequencies, and conditions for the usability of the circuit are deduced. In addition to the operational behaviour, we also evaluate the circuits by means of a noise analyses. Based on this analysis, we show a direct comparison of the circuits. The analysis is based on simulation studies, as well as collaborative measurements on test circuits where all circuit parameters are provided. The test circuits are realized with dedicated state-of-the-art circuit elements and, together with the analysis approach and the results, thus provide a basis for future developments.
format Online
Article
Text
id pubmed-9920718
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99207182023-02-12 Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures Flatscher, Matthias Neumayer, Markus Bretterklieber, Thomas Wegleiter, Hannes Sensors (Basel) Article Dielectric sensing based on capacitive measurement technology is a favourable measurement approach in many industries and fields of application. From an electrical point of view, a coupling capacitance must be measured in the presence of stray capacitances. Different receiver circuit structures have been proposed for the underlying displacement current measurement. Ideally, the sensor assembly is directly connected to the sensor circuitry to minimize the influence with respect to these parasitic capacitances. However, under harsh operating conditions, e.g., at high temperatures, the sensor and the receiver circuit must be separated in order to protect the electronics. Consequently, the receiver circuit and the sensor have to be connected by cables, e.g., coaxial cables. The measurement setup differs significantly from the ideal design with a direct connection. In this paper, we investigate the behaviour of three common measurement circuits for capacitive measurements in instrumentations with cables. We study the interaction between the sensor and the electronics and analyse the operating behaviour of the circuit, as well as the operating states of the amplifiers used. We also address cross-sensitivities in the sensor design due to stray capacitances. The analyses are carried out for different cable lengths and measuring frequencies, and conditions for the usability of the circuit are deduced. In addition to the operational behaviour, we also evaluate the circuits by means of a noise analyses. Based on this analysis, we show a direct comparison of the circuits. The analysis is based on simulation studies, as well as collaborative measurements on test circuits where all circuit parameters are provided. The test circuits are realized with dedicated state-of-the-art circuit elements and, together with the analysis approach and the results, thus provide a basis for future developments. MDPI 2023-01-19 /pmc/articles/PMC9920718/ /pubmed/36772186 http://dx.doi.org/10.3390/s23031148 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Flatscher, Matthias
Neumayer, Markus
Bretterklieber, Thomas
Wegleiter, Hannes
Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures
title Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures
title_full Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures
title_fullStr Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures
title_full_unstemmed Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures
title_short Transmission Lines in Capacitance Measurement Systems: An Investigation of Receiver Structures
title_sort transmission lines in capacitance measurement systems: an investigation of receiver structures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920718/
https://www.ncbi.nlm.nih.gov/pubmed/36772186
http://dx.doi.org/10.3390/s23031148
work_keys_str_mv AT flatschermatthias transmissionlinesincapacitancemeasurementsystemsaninvestigationofreceiverstructures
AT neumayermarkus transmissionlinesincapacitancemeasurementsystemsaninvestigationofreceiverstructures
AT bretterklieberthomas transmissionlinesincapacitancemeasurementsystemsaninvestigationofreceiverstructures
AT wegleiterhannes transmissionlinesincapacitancemeasurementsystemsaninvestigationofreceiverstructures