Cargando…
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920765/ https://www.ncbi.nlm.nih.gov/pubmed/36772269 http://dx.doi.org/10.3390/s23031230 |
_version_ | 1784887150026686464 |
---|---|
author | Baek, Suwhan Kim, Juhyeong Yu, Hyunsoo Yang, Geunbo Sohn, Illsoo Cho, Youngho Park, Cheolsoo |
author_facet | Baek, Suwhan Kim, Juhyeong Yu, Hyunsoo Yang, Geunbo Sohn, Illsoo Cho, Youngho Park, Cheolsoo |
author_sort | Baek, Suwhan |
collection | PubMed |
description | In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features. |
format | Online Article Text |
id | pubmed-9920765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99207652023-02-12 Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning Baek, Suwhan Kim, Juhyeong Yu, Hyunsoo Yang, Geunbo Sohn, Illsoo Cho, Youngho Park, Cheolsoo Sensors (Basel) Article In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features. MDPI 2023-01-20 /pmc/articles/PMC9920765/ /pubmed/36772269 http://dx.doi.org/10.3390/s23031230 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baek, Suwhan Kim, Juhyeong Yu, Hyunsoo Yang, Geunbo Sohn, Illsoo Cho, Youngho Park, Cheolsoo Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
title | Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
title_full | Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
title_fullStr | Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
title_full_unstemmed | Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
title_short | Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
title_sort | intelligent feature selection for ecg-based personal authentication using deep reinforcement learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920765/ https://www.ncbi.nlm.nih.gov/pubmed/36772269 http://dx.doi.org/10.3390/s23031230 |
work_keys_str_mv | AT baeksuwhan intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning AT kimjuhyeong intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning AT yuhyunsoo intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning AT yanggeunbo intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning AT sohnillsoo intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning AT choyoungho intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning AT parkcheolsoo intelligentfeatureselectionforecgbasedpersonalauthenticationusingdeepreinforcementlearning |