Cargando…
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5t...
Autores principales: | Baek, Suwhan, Kim, Juhyeong, Yu, Hyunsoo, Yang, Geunbo, Sohn, Illsoo, Cho, Youngho, Park, Cheolsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920765/ https://www.ncbi.nlm.nih.gov/pubmed/36772269 http://dx.doi.org/10.3390/s23031230 |
Ejemplares similares
-
Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning
por: Kim, Junmo, et al.
Publicado: (2021) -
Effect of a Recliner Chair with Rocking Motions on Sleep Efficiency
por: Baek, Suwhan, et al.
Publicado: (2021) -
Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns
por: Sunarya, Unang, et al.
Publicado: (2020) -
Deep Learning-Based Optimal Smart Shoes Sensor Selection for Energy Expenditure and Heart Rate Estimation
por: Eom, Heesang, et al.
Publicado: (2021) -
ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks
por: Kim, Beom-Hun, et al.
Publicado: (2020)