Cargando…
A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid
An ultrasensitive and selective voltammetric sensor with an ultratrace-level detection limit is introduced for ketoconazole (KTC) determination in real samples using a modified carbon paste electrode with a sheaf-like Ce-BTC MOF nanostructure and ionic liquid. The as-synthesized nanostructure was ch...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920814/ https://www.ncbi.nlm.nih.gov/pubmed/36770482 http://dx.doi.org/10.3390/nano13030523 |
_version_ | 1784887162213236736 |
---|---|
author | Tajik, Somayeh Sharifi, Fatemeh Aflatoonian, Behnaz Di Bartolomeo, Antonio |
author_facet | Tajik, Somayeh Sharifi, Fatemeh Aflatoonian, Behnaz Di Bartolomeo, Antonio |
author_sort | Tajik, Somayeh |
collection | PubMed |
description | An ultrasensitive and selective voltammetric sensor with an ultratrace-level detection limit is introduced for ketoconazole (KTC) determination in real samples using a modified carbon paste electrode with a sheaf-like Ce-BTC MOF nanostructure and ionic liquid. The as-synthesized nanostructure was characterized by several techniques, including energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and chronoamperometry. The limit of detection (LOD) of the developed sensor for KTC is 0.04 μM, and the response was found to be in the dynamic concentration range of 0.1–110.0 μM in a phosphate buffer solution. The proposed electrode exhibits acceptable electrocatalytic activity for KTC oxidation with a high sensitivity of 0.1342 μA·μM(−1). The ability of the fabricated sensor to monitor KTC in real aqueous samples is demonstrated using standard addition data. |
format | Online Article Text |
id | pubmed-9920814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99208142023-02-12 A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid Tajik, Somayeh Sharifi, Fatemeh Aflatoonian, Behnaz Di Bartolomeo, Antonio Nanomaterials (Basel) Article An ultrasensitive and selective voltammetric sensor with an ultratrace-level detection limit is introduced for ketoconazole (KTC) determination in real samples using a modified carbon paste electrode with a sheaf-like Ce-BTC MOF nanostructure and ionic liquid. The as-synthesized nanostructure was characterized by several techniques, including energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and chronoamperometry. The limit of detection (LOD) of the developed sensor for KTC is 0.04 μM, and the response was found to be in the dynamic concentration range of 0.1–110.0 μM in a phosphate buffer solution. The proposed electrode exhibits acceptable electrocatalytic activity for KTC oxidation with a high sensitivity of 0.1342 μA·μM(−1). The ability of the fabricated sensor to monitor KTC in real aqueous samples is demonstrated using standard addition data. MDPI 2023-01-28 /pmc/articles/PMC9920814/ /pubmed/36770482 http://dx.doi.org/10.3390/nano13030523 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tajik, Somayeh Sharifi, Fatemeh Aflatoonian, Behnaz Di Bartolomeo, Antonio A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid |
title | A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid |
title_full | A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid |
title_fullStr | A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid |
title_full_unstemmed | A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid |
title_short | A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid |
title_sort | new electrochemical sensor for the detection of ketoconazole using carbon paste electrode modified with sheaf-like ce-btc mof nanostructure and ionic liquid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920814/ https://www.ncbi.nlm.nih.gov/pubmed/36770482 http://dx.doi.org/10.3390/nano13030523 |
work_keys_str_mv | AT tajiksomayeh anewelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT sharififatemeh anewelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT aflatoonianbehnaz anewelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT dibartolomeoantonio anewelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT tajiksomayeh newelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT sharififatemeh newelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT aflatoonianbehnaz newelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid AT dibartolomeoantonio newelectrochemicalsensorforthedetectionofketoconazoleusingcarbonpasteelectrodemodifiedwithsheaflikecebtcmofnanostructureandionicliquid |