Cargando…
Deep Learning Techniques in Intelligent Fault Diagnosis and Prognosis for Industrial Systems: A Review
Fault diagnosis and prognosis (FDP) tries to recognize and locate the faults from the captured sensory data, and also predict their failures in advance, which can greatly help to take appropriate actions for maintenance and avoid serious consequences in industrial systems. In recent years, deep lear...
Autores principales: | Qiu, Shaohua, Cui, Xiaopeng, Ping, Zuowei, Shan, Nanliang, Li, Zhong, Bao, Xianqiang, Xu, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920822/ https://www.ncbi.nlm.nih.gov/pubmed/36772347 http://dx.doi.org/10.3390/s23031305 |
Ejemplares similares
-
Fast Fault Diagnosis in Industrial Embedded Systems Based on Compressed Sensing and Deep Kernel Extreme Learning Machines
por: Shan, Nanliang, et al.
Publicado: (2022) -
A Deep Generative Model with Multiscale Features Enabled Industrial Internet of Things for Intelligent Fault Diagnosis of Bearings
por: Hu, He-xuan, et al.
Publicado: (2023) -
Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review
por: Fernandes, Marta, et al.
Publicado: (2022) -
Explainable AI for Bearing Fault Prognosis Using Deep Learning Techniques
por: Sanakkayala, Deva Chaitanya, et al.
Publicado: (2022) -
Intelligent Fault Diagnosis of Industrial Robot Based on Multiclass Mahalanobis-Taguchi System for Imbalanced Data
por: Sun, Yue, et al.
Publicado: (2022)