Cargando…

A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks

Machine learning (ML) and deep learning (DL), in particular, are common tools for anomaly detection (AD). With the rapid increase in the number of Internet-connected devices, the growing desire for Internet of Things (IoT) devices in the home, on our person, and in our vehicles, and the transition t...

Descripción completa

Detalles Bibliográficos
Autores principales: DeMedeiros, Kyle, Hendawi, Abdeltawab, Alvarez, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920825/
https://www.ncbi.nlm.nih.gov/pubmed/36772393
http://dx.doi.org/10.3390/s23031352
Descripción
Sumario:Machine learning (ML) and deep learning (DL), in particular, are common tools for anomaly detection (AD). With the rapid increase in the number of Internet-connected devices, the growing desire for Internet of Things (IoT) devices in the home, on our person, and in our vehicles, and the transition to smart infrastructure and the Industrial IoT (IIoT), anomaly detection in these devices is critical. This paper is a survey of anomaly detection in sensor networks/the IoT. This paper defines what an anomaly is and surveys multiple sources based on those definitions. The goal of this survey was to highlight how anomaly detection is being performed on the Internet of Things and sensor networks, identify anomaly detection approaches, and outlines gaps in the research in this domain.