Cargando…

A pH-Controlled Solid Inhibitor Based on PAM Hydrogel for Steel Corrosion Protection in Wide Range pH NaCl Medium

To provide carbon steel a long-term corrosion protection effect in NaCl solutions with different pH values, based on poly-acrylamide (PAM) and oleate imidazoline (OIM), a solid corrosion inhibitor with the properties of pH-controlled release was synthesized. SEM, FTIR and TGA results indicated that...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qing, Lin, Bing, Tang, Junlei, Wang, Yingying, Zheng, Hongpeng, Zhang, Hailong, Nie, Zhen, Zhang, Yanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920852/
https://www.ncbi.nlm.nih.gov/pubmed/36770984
http://dx.doi.org/10.3390/molecules28031314
Descripción
Sumario:To provide carbon steel a long-term corrosion protection effect in NaCl solutions with different pH values, based on poly-acrylamide (PAM) and oleate imidazoline (OIM), a solid corrosion inhibitor with the properties of pH-controlled release was synthesized. SEM, FTIR and TGA results indicated that the OIM inhibitors were successfully loaded into PAM hydrogel with a high OIM encapsulation content (39.64 wt.%). The OIM release behavior from the hydrogel structure has two stages, quick release and sustained release. The pH of solutions could affect the initial release kinetics of OIM inhibitors and the diffusion path in the hydrogel structure. Weight loss measurement of L80 steel in different pH solutions with OIM@PAM proved the inhibitor responsive release mechanism and anticorrosion performance. The inhibition efficiency of OIM@PAM can maintain over 80% after long-term immersion in a harsh corrosive environment (pH 3), which is much higher than the inhibition efficiency of OIM@PAM in a moderate corrosive solution.