Cargando…

Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing

Improvements in the design of receptors for the detection and quantification of anions are desirable and ongoing in the field of anion chemistry, and remarkable progress has been made in this direction. In this regard, the development of luminescent chemosensors for sensing anions is an imperative a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rashid, Ambreen, Mondal, Sahidul, Ghosh, Pradyut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920910/
https://www.ncbi.nlm.nih.gov/pubmed/36770897
http://dx.doi.org/10.3390/molecules28031231
Descripción
Sumario:Improvements in the design of receptors for the detection and quantification of anions are desirable and ongoing in the field of anion chemistry, and remarkable progress has been made in this direction. In this regard, the development of luminescent chemosensors for sensing anions is an imperative and demanding sub-area in supramolecular chemistry. This decade, in particular, witnessed advancements in chemosensors based on ruthenium and iridium complexes for anion sensing by virtue of their modular synthesis and rich chemical and photophysical properties, such as visible excitation wavelength, high quantum efficiency, high luminescence intensity, long lifetimes of phosphorescence, and large Stokes shifts, etc. Thus, this review aims to summarize the recent advances in the development of ruthenium(II) and iridium(III)-based complexes for their application as luminescent chemosensors for anion sensing. In addition, the focus was devoted to designing aspects of polypyridyl complexes of these two transition metals with different recognition motifs, which upon interacting with different inorganic anions, produces desirable quantifiable outputs.