Cargando…
Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors
This study aims to predict emotions using biosignals collected via wrist-worn sensor and evaluate the performance of different prediction models. Two dimensions of emotions were considered: valence and arousal. The data collected by the sensor were used in conjunction with target values obtained fro...
Autores principales: | Siirtola, Pekka, Tamminen, Satu, Chandra, Gunjan, Ihalapathirana, Anusha, Röning, Juha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920941/ https://www.ncbi.nlm.nih.gov/pubmed/36772638 http://dx.doi.org/10.3390/s23031598 |
Ejemplares similares
-
Data-Driven Identification of Long-Term Glycemia Clusters and Their Individualized Predictors in Finnish Patients with Type 2 Diabetes
por: Lavikainen, Piia, et al.
Publicado: (2023) -
Comparison of Regression and Classification Models for User-Independent and Personal Stress Detection
por: Siirtola, Pekka, et al.
Publicado: (2020) -
Using Sleep Time Data from Wearable Sensors for Early Detection of Migraine Attacks
por: Siirtola, Pekka, et al.
Publicado: (2018) -
Incremental Learning to Personalize Human Activity Recognition Models: The Importance of Human AI Collaboration †
por: Siirtola, Pekka, et al.
Publicado: (2019) -
Classification of 74 facial emoji’s emotional states on the valence-arousal axes
por: Kutsuzawa, Gaku, et al.
Publicado: (2022)