Cargando…

Investigation of a Simple Viscoelastic Model for a PVC-Gel Actuator under Combined Mechanical and Electrical Loading

PVC gels are gaining more attention in the applications of soft actuators. While their characteristics have been extensively studied experimentally, precise models that predict the deformation due to imposed mechanical and electrical forces are not yet available. In this work, a viscoelastic model b...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Maorong, Jakobsen, Johnny, Li, Ruiqin, Bai, Shaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920949/
https://www.ncbi.nlm.nih.gov/pubmed/36770190
http://dx.doi.org/10.3390/ma16031183
Descripción
Sumario:PVC gels are gaining more attention in the applications of soft actuators. While their characteristics have been extensively studied experimentally, precise models that predict the deformation due to imposed mechanical and electrical forces are not yet available. In this work, a viscoelastic model based on a combination of a Maxwell and a Kelvin–Voigt model is developed to describe the responsive deformation of the actuator. The model parameters are tuned using data obtained from a unique experimental setup. The PVC gel used in the actuator is made from PVC and dibutyl adipate (DBA) together with a tetrahydrofuran (THF) solvent. A full factorial test campaign with four and three levels for the mechanical and electrical forces, respectively, are considered. The results showed that some of the viscoelastic response could be captured by the model to some extent but, furthermore, the stiffness behavior of the PVC gel seemed to be load-type-dependent, meaning that the PVC-gel material changed stiffness due to the magnitude of the electrical force applied and this change was not equal to a similar change in mechanical force.