Cargando…

Moisture Determination for Fine-Sized Copper Ore by Computer Vision and Thermovision Methods

The moisture of bulk material has a significant impact on the energetic efficiency of dry grinding, resultant particle size distribution and particle shape, and conditions of powder transport. This research aims to develop computer vision and thermovision techniques for the on-site estimation of moi...

Descripción completa

Detalles Bibliográficos
Autores principales: Buchczik, Dariusz, Budzan, Sebastian, Krauze, Oliwia, Wyzgolik, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920960/
https://www.ncbi.nlm.nih.gov/pubmed/36772273
http://dx.doi.org/10.3390/s23031220
Descripción
Sumario:The moisture of bulk material has a significant impact on the energetic efficiency of dry grinding, resultant particle size distribution and particle shape, and conditions of powder transport. This research aims to develop computer vision and thermovision techniques for the on-site estimation of moisture content in copper ore, for use, e.g., in dry grinding installations. The influence of particle size on the results of moisture estimation is also studied. The tested granular material was copper ore of particle size 0–2 mm and relative moisture content of 0.5–11%. Both vision and thermovision images were taken at standard and macro scales. The results suggest that median-intensity vision images monotonically reflect copper ore moisture in the range of about 0.5–5%. Suitable models were identified and cross-validated here. In contrary, thermograms should not be analyzed simply for their mean temperature but treated with computer vision processing algorithms.