Cargando…
Human–Computer Interaction with a Real-Time Speech Emotion Recognition with Ensembling Techniques 1D Convolution Neural Network and Attention
Emotions have a crucial function in the mental existence of humans. They are vital for identifying a person’s behaviour and mental condition. Speech Emotion Recognition (SER) is extracting a speaker’s emotional state from their speech signal. SER is a growing discipline in human–computer interaction...
Autor principal: | Alsabhan, Waleed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921095/ https://www.ncbi.nlm.nih.gov/pubmed/36772427 http://dx.doi.org/10.3390/s23031386 |
Ejemplares similares
-
Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
por: Zhang, Hua, et al.
Publicado: (2021) -
Multi-Stream Convolution-Recurrent Neural Networks Based on Attention Mechanism Fusion for Speech Emotion Recognition
por: Tao, Huawei, et al.
Publicado: (2022) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023) -
Speaker Recognition Using Constrained Convolutional Neural Networks in Emotional Speech
por: Simić, Nikola, et al.
Publicado: (2022) -
Cascaded Convolutional Neural Network Architecture for Speech Emotion Recognition in Noisy Conditions
por: Nam, Youngja, et al.
Publicado: (2021)