Cargando…

A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection

High-speed detection of abnormal frames in surveillance videos is essential for security. This paper proposes a new video anomaly–detection model, namely, feature trajectory–smoothed long short-term memory (FTS-LSTM). This model trains an LSTM autoencoder network to generate future frames on normal...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Li, Wang, Zhiguo, Zhang, Yujin, Wang, Guijin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921103/
https://www.ncbi.nlm.nih.gov/pubmed/36772652
http://dx.doi.org/10.3390/s23031612
_version_ 1784887231687688192
author Sun, Li
Wang, Zhiguo
Zhang, Yujin
Wang, Guijin
author_facet Sun, Li
Wang, Zhiguo
Zhang, Yujin
Wang, Guijin
author_sort Sun, Li
collection PubMed
description High-speed detection of abnormal frames in surveillance videos is essential for security. This paper proposes a new video anomaly–detection model, namely, feature trajectory–smoothed long short-term memory (FTS-LSTM). This model trains an LSTM autoencoder network to generate future frames on normal video streams, and uses the FTS detector and generation error (GE) detector to detect anomalies on testing video streams. FTS loss is a new indicator in the anomaly–detection area. In the training stage, the model applies a feature trajectory smoothness (FTS) loss to constrain the LSTM layer. This loss enables the LSTM layer to learn the temporal regularity of video streams more precisely. In the detection stage, the model utilizes the FTS loss and the GE loss as two detectors to detect anomalies. By cascading the FTS detector and the GE detector to detect anomalies, the model achieves a high speed and competitive anomaly-detection performance on multiple datasets.
format Online
Article
Text
id pubmed-9921103
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99211032023-02-12 A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection Sun, Li Wang, Zhiguo Zhang, Yujin Wang, Guijin Sensors (Basel) Article High-speed detection of abnormal frames in surveillance videos is essential for security. This paper proposes a new video anomaly–detection model, namely, feature trajectory–smoothed long short-term memory (FTS-LSTM). This model trains an LSTM autoencoder network to generate future frames on normal video streams, and uses the FTS detector and generation error (GE) detector to detect anomalies on testing video streams. FTS loss is a new indicator in the anomaly–detection area. In the training stage, the model applies a feature trajectory smoothness (FTS) loss to constrain the LSTM layer. This loss enables the LSTM layer to learn the temporal regularity of video streams more precisely. In the detection stage, the model utilizes the FTS loss and the GE loss as two detectors to detect anomalies. By cascading the FTS detector and the GE detector to detect anomalies, the model achieves a high speed and competitive anomaly-detection performance on multiple datasets. MDPI 2023-02-02 /pmc/articles/PMC9921103/ /pubmed/36772652 http://dx.doi.org/10.3390/s23031612 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sun, Li
Wang, Zhiguo
Zhang, Yujin
Wang, Guijin
A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
title A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
title_full A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
title_fullStr A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
title_full_unstemmed A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
title_short A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
title_sort feature-trajectory-smoothed high-speed model for video anomaly detection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921103/
https://www.ncbi.nlm.nih.gov/pubmed/36772652
http://dx.doi.org/10.3390/s23031612
work_keys_str_mv AT sunli afeaturetrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT wangzhiguo afeaturetrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT zhangyujin afeaturetrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT wangguijin afeaturetrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT sunli featuretrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT wangzhiguo featuretrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT zhangyujin featuretrajectorysmoothedhighspeedmodelforvideoanomalydetection
AT wangguijin featuretrajectorysmoothedhighspeedmodelforvideoanomalydetection