Cargando…
A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection
High-speed detection of abnormal frames in surveillance videos is essential for security. This paper proposes a new video anomaly–detection model, namely, feature trajectory–smoothed long short-term memory (FTS-LSTM). This model trains an LSTM autoencoder network to generate future frames on normal...
Autores principales: | Sun, Li, Wang, Zhiguo, Zhang, Yujin, Wang, Guijin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921103/ https://www.ncbi.nlm.nih.gov/pubmed/36772652 http://dx.doi.org/10.3390/s23031612 |
Ejemplares similares
-
Online Video Anomaly Detection
por: Zhang, Yuxing, et al.
Publicado: (2023) -
Spatio-temporal prediction and reconstruction network for video anomaly detection
por: Liu, Ting, et al.
Publicado: (2022) -
High-Speed Video System for Micro-Expression Detection and Recognition
por: Borza, Diana, et al.
Publicado: (2017) -
Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
por: Wang, Bokun, et al.
Publicado: (2022) -
Time Series Anomaly Detection Model Based on Multi-Features
por: Tang, Hengyao, et al.
Publicado: (2022)