Cargando…
A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems
Anomaly detection has been known as an effective technique to detect faults or cyber-attacks in industrial control systems (ICS). Therefore, many anomaly detection models have been proposed for ICS. However, most models have been implemented and evaluated under specific circumstances, which leads to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921147/ https://www.ncbi.nlm.nih.gov/pubmed/36772349 http://dx.doi.org/10.3390/s23031310 |
_version_ | 1784887242087464960 |
---|---|
author | Kim, Bedeuro Alawami, Mohsen Ali Kim, Eunsoo Oh, Sanghak Park, Jeongyong Kim, Hyoungshick |
author_facet | Kim, Bedeuro Alawami, Mohsen Ali Kim, Eunsoo Oh, Sanghak Park, Jeongyong Kim, Hyoungshick |
author_sort | Kim, Bedeuro |
collection | PubMed |
description | Anomaly detection has been known as an effective technique to detect faults or cyber-attacks in industrial control systems (ICS). Therefore, many anomaly detection models have been proposed for ICS. However, most models have been implemented and evaluated under specific circumstances, which leads to confusion about choosing the best model in a real-world situation. In other words, there still needs to be a comprehensive comparison of state-of-the-art anomaly detection models with common experimental configurations. To address this problem, we conduct a comparative study of five representative time series anomaly detection models: InterFusion, RANSynCoder, GDN, LSTM-ED, and USAD. We specifically compare the performance analysis of the models in detection accuracy, training, and testing times with two publicly available datasets: SWaT and HAI. The experimental results show that the best model results are inconsistent with the datasets. For SWaT, InterFusion achieves the highest [Formula: see text]- [Formula: see text] of 90.7% while RANSynCoder achieves the highest [Formula: see text]- [Formula: see text] of 82.9% for HAI. We also investigate the effects of the training set size on the performance of anomaly detection models. We found that about 40% of the entire training set would be sufficient to build a model producing a similar performance compared to using the entire training set. |
format | Online Article Text |
id | pubmed-9921147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99211472023-02-12 A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems Kim, Bedeuro Alawami, Mohsen Ali Kim, Eunsoo Oh, Sanghak Park, Jeongyong Kim, Hyoungshick Sensors (Basel) Article Anomaly detection has been known as an effective technique to detect faults or cyber-attacks in industrial control systems (ICS). Therefore, many anomaly detection models have been proposed for ICS. However, most models have been implemented and evaluated under specific circumstances, which leads to confusion about choosing the best model in a real-world situation. In other words, there still needs to be a comprehensive comparison of state-of-the-art anomaly detection models with common experimental configurations. To address this problem, we conduct a comparative study of five representative time series anomaly detection models: InterFusion, RANSynCoder, GDN, LSTM-ED, and USAD. We specifically compare the performance analysis of the models in detection accuracy, training, and testing times with two publicly available datasets: SWaT and HAI. The experimental results show that the best model results are inconsistent with the datasets. For SWaT, InterFusion achieves the highest [Formula: see text]- [Formula: see text] of 90.7% while RANSynCoder achieves the highest [Formula: see text]- [Formula: see text] of 82.9% for HAI. We also investigate the effects of the training set size on the performance of anomaly detection models. We found that about 40% of the entire training set would be sufficient to build a model producing a similar performance compared to using the entire training set. MDPI 2023-01-23 /pmc/articles/PMC9921147/ /pubmed/36772349 http://dx.doi.org/10.3390/s23031310 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Bedeuro Alawami, Mohsen Ali Kim, Eunsoo Oh, Sanghak Park, Jeongyong Kim, Hyoungshick A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems |
title | A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems |
title_full | A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems |
title_fullStr | A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems |
title_full_unstemmed | A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems |
title_short | A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems |
title_sort | comparative study of time series anomaly detection models for industrial control systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921147/ https://www.ncbi.nlm.nih.gov/pubmed/36772349 http://dx.doi.org/10.3390/s23031310 |
work_keys_str_mv | AT kimbedeuro acomparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT alawamimohsenali acomparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT kimeunsoo acomparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT ohsanghak acomparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT parkjeongyong acomparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT kimhyoungshick acomparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT kimbedeuro comparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT alawamimohsenali comparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT kimeunsoo comparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT ohsanghak comparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT parkjeongyong comparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems AT kimhyoungshick comparativestudyoftimeseriesanomalydetectionmodelsforindustrialcontrolsystems |