Cargando…
IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments
Convolutional neural network (CNN)-based autonomous driving object detection algorithms have excellent detection results on conventional datasets, but the detector performance can be severely degraded in low-light foggy weather environments. Existing methods have difficulty in achieving a balance be...
Autores principales: | Qiu, Yongsheng, Lu, Yuanyao, Wang, Yuantao, Jiang, Haiyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921160/ https://www.ncbi.nlm.nih.gov/pubmed/36772388 http://dx.doi.org/10.3390/s23031347 |
Ejemplares similares
-
YOLOv5s-Fog: An Improved Model Based on YOLOv5s for Object Detection in Foggy Weather Scenarios
por: Meng, Xianglin, et al.
Publicado: (2023) -
A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7
por: Li, Songjiang, et al.
Publicado: (2023) -
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
por: Kulyukin, Vladimir A., et al.
Publicado: (2023) -
TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection
por: Wang, Siyang, et al.
Publicado: (2023) -
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications
por: Durve, Mihir, et al.
Publicado: (2023)