Cargando…
Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments
A little explored area of human activity recognition (HAR) is in people operating in relation to extreme environments, e.g., mountaineers. In these contexts, the ability to accurately identify activities, alongside other data streams, has the potential to prevent death and serious negative health ev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921171/ https://www.ncbi.nlm.nih.gov/pubmed/36772456 http://dx.doi.org/10.3390/s23031416 |
_version_ | 1784887248128311296 |
---|---|
author | Ward, Stephen Hu, Sijung Zecca, Massimiliano |
author_facet | Ward, Stephen Hu, Sijung Zecca, Massimiliano |
author_sort | Ward, Stephen |
collection | PubMed |
description | A little explored area of human activity recognition (HAR) is in people operating in relation to extreme environments, e.g., mountaineers. In these contexts, the ability to accurately identify activities, alongside other data streams, has the potential to prevent death and serious negative health events to the operators. This study aimed to address this user group and investigate factors associated with the placement, number, and combination of accelerometer sensors. Eight participants (age = 25.0 ± 7 years) wore 17 accelerometers simultaneously during lab-based simulated mountaineering activities, under a range of equipment and loading conditions. Initially, a selection of machine learning techniques was tested. Secondly, a comprehensive analysis of all possible combinations of the 17 accelerometers was performed to identify the optimum number of sensors, and their respective body locations. Finally, the impact of activity-specific equipment on the classifier accuracy was explored. The results demonstrated that the support vector machine (SVM) provided the most accurate classifications of the five machine learning algorithms tested. It was found that two sensors provided the optimum balance between complexity, performance, and user compliance. Sensors located on the hip and right tibia produced the most accurate classification of the simulated activities (96.29%). A significant effect associated with the use of mountaineering boots and a 12 kg rucksack was established. |
format | Online Article Text |
id | pubmed-9921171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99211712023-02-12 Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments Ward, Stephen Hu, Sijung Zecca, Massimiliano Sensors (Basel) Article A little explored area of human activity recognition (HAR) is in people operating in relation to extreme environments, e.g., mountaineers. In these contexts, the ability to accurately identify activities, alongside other data streams, has the potential to prevent death and serious negative health events to the operators. This study aimed to address this user group and investigate factors associated with the placement, number, and combination of accelerometer sensors. Eight participants (age = 25.0 ± 7 years) wore 17 accelerometers simultaneously during lab-based simulated mountaineering activities, under a range of equipment and loading conditions. Initially, a selection of machine learning techniques was tested. Secondly, a comprehensive analysis of all possible combinations of the 17 accelerometers was performed to identify the optimum number of sensors, and their respective body locations. Finally, the impact of activity-specific equipment on the classifier accuracy was explored. The results demonstrated that the support vector machine (SVM) provided the most accurate classifications of the five machine learning algorithms tested. It was found that two sensors provided the optimum balance between complexity, performance, and user compliance. Sensors located on the hip and right tibia produced the most accurate classification of the simulated activities (96.29%). A significant effect associated with the use of mountaineering boots and a 12 kg rucksack was established. MDPI 2023-01-27 /pmc/articles/PMC9921171/ /pubmed/36772456 http://dx.doi.org/10.3390/s23031416 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ward, Stephen Hu, Sijung Zecca, Massimiliano Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments |
title | Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments |
title_full | Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments |
title_fullStr | Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments |
title_full_unstemmed | Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments |
title_short | Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments |
title_sort | effect of equipment on the accuracy of accelerometer-based human activity recognition in extreme environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921171/ https://www.ncbi.nlm.nih.gov/pubmed/36772456 http://dx.doi.org/10.3390/s23031416 |
work_keys_str_mv | AT wardstephen effectofequipmentontheaccuracyofaccelerometerbasedhumanactivityrecognitioninextremeenvironments AT husijung effectofequipmentontheaccuracyofaccelerometerbasedhumanactivityrecognitioninextremeenvironments AT zeccamassimiliano effectofequipmentontheaccuracyofaccelerometerbasedhumanactivityrecognitioninextremeenvironments |