Cargando…
Semisupervised white matter hyperintensities segmentation on MRI
This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included bia...
Autores principales: | Huang, Fan, Xia, Peng, Vardhanabhuti, Varut, Hui, Sai‐Kam, Lau, Kui‐Kai, Ka‐Fung Mak, Henry, Cao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921214/ https://www.ncbi.nlm.nih.gov/pubmed/36214210 http://dx.doi.org/10.1002/hbm.26109 |
Ejemplares similares
-
Validation of Automated White Matter Hyperintensity Segmentation
por: Smart, Sean D., et al.
Publicado: (2011) -
Semi-Supervised Learning in Medical MRI Segmentation: Brain Tissue with White Matter Hyperintensity Segmentation Using FLAIR MRI
por: Rieu, ZunHyan, et al.
Publicado: (2021) -
Joint Cancer Segmentation and PI-RADS Classification on Multiparametric MRI Using MiniSegCaps Network
por: Jiang, Wenting, et al.
Publicado: (2023) -
White matter hyperintensities segmentation using an ensemble of neural networks
por: Li, Xinxin, et al.
Publicado: (2021) -
Optimizing automated white matter hyperintensity segmentation in individuals with stroke
por: Ferris, Jennifer K., et al.
Publicado: (2023)