Cargando…
Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain
Background: Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective abil...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921215/ https://www.ncbi.nlm.nih.gov/pubmed/36771072 http://dx.doi.org/10.3390/molecules28031402 |
_version_ | 1784887258558496768 |
---|---|
author | Mahdi, Wael A. AlGhamdi, Shareefa A. Alghamdi, Amira M. Imam, Syed Sarim Alshehri, Sultan Almaniea, Mohammad A. Hajjar, Baraa Mohammed Al-Abbasi, Fahad A. Sayyed, Nadeem Kazmi, Imran |
author_facet | Mahdi, Wael A. AlGhamdi, Shareefa A. Alghamdi, Amira M. Imam, Syed Sarim Alshehri, Sultan Almaniea, Mohammad A. Hajjar, Baraa Mohammed Al-Abbasi, Fahad A. Sayyed, Nadeem Kazmi, Imran |
author_sort | Mahdi, Wael A. |
collection | PubMed |
description | Background: Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington’s disease (HD). Methods: To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. Results: The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. Conclusion: The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. |
format | Online Article Text |
id | pubmed-9921215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99212152023-02-12 Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain Mahdi, Wael A. AlGhamdi, Shareefa A. Alghamdi, Amira M. Imam, Syed Sarim Alshehri, Sultan Almaniea, Mohammad A. Hajjar, Baraa Mohammed Al-Abbasi, Fahad A. Sayyed, Nadeem Kazmi, Imran Molecules Article Background: Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington’s disease (HD). Methods: To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. Results: The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. Conclusion: The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. MDPI 2023-02-01 /pmc/articles/PMC9921215/ /pubmed/36771072 http://dx.doi.org/10.3390/molecules28031402 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mahdi, Wael A. AlGhamdi, Shareefa A. Alghamdi, Amira M. Imam, Syed Sarim Alshehri, Sultan Almaniea, Mohammad A. Hajjar, Baraa Mohammed Al-Abbasi, Fahad A. Sayyed, Nadeem Kazmi, Imran Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
title | Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
title_full | Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
title_fullStr | Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
title_full_unstemmed | Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
title_short | Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington’s Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
title_sort | neuroprotectant effects of hibiscetin in 3-nitropropionic acid-induced huntington’s disease via subsiding oxidative stress and modulating monoamine neurotransmitters in rats brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921215/ https://www.ncbi.nlm.nih.gov/pubmed/36771072 http://dx.doi.org/10.3390/molecules28031402 |
work_keys_str_mv | AT mahdiwaela neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT alghamdishareefaa neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT alghamdiamiram neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT imamsyedsarim neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT alshehrisultan neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT almanieamohammada neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT hajjarbaraamohammed neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT alabbasifahada neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT sayyednadeem neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain AT kazmiimran neuroprotectanteffectsofhibiscetinin3nitropropionicacidinducedhuntingtonsdiseaseviasubsidingoxidativestressandmodulatingmonoamineneurotransmittersinratsbrain |