Cargando…
Identification of essential tremor based on resting‐state functional connectivity
Currently, machine‐learning algorithms have been considered the most promising approach to reach a clinical diagnosis at the individual level. This study aimed to investigate whether the whole‐brain resting‐state functional connectivity (RSFC) metrics combined with machine‐learning algorithms could...
Autores principales: | Zhang, Xueyan, Chen, Huiyue, Zhang, Xiaoyu, Wang, Hansheng, Tao, Li, He, Wanlin, Li, Qin, Cheng, Oumei, Luo, Jing, Man, Yun, Xiao, Zheng, Fang, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921216/ https://www.ncbi.nlm.nih.gov/pubmed/36326578 http://dx.doi.org/10.1002/hbm.26124 |
Ejemplares similares
-
Identifying Depressed Essential Tremor Using Resting-State Voxel-Wise Global Brain Connectivity: A Multivariate Pattern Analysis
por: Li, Yufen, et al.
Publicado: (2021) -
Combined Intrinsic Local Functional Connectivity With Multivariate Pattern Analysis to Identify Depressed Essential Tremor
por: Zhang, Xueyan, et al.
Publicado: (2022) -
Combined brain network topological metrics with machine learning algorithms to identify essential tremor
por: Li, Qin, et al.
Publicado: (2022) -
Using histogram analysis of the intrinsic brain activity mapping to identify essential tremor
por: Xiao, Pan, et al.
Publicado: (2023) -
Altered local and matrix functional connectivity in depressed essential tremor patients
por: Duan, Xiyue, et al.
Publicado: (2021)