Cargando…
A Hybrid Generic Framework for Heart Problem Diagnosis Based on a Machine Learning Paradigm
The early, valid prediction of heart problems would minimize life threats and save lives, while lack of prediction and false diagnosis can be fatal. Addressing a single dataset alone to build a machine learning model for the identification of heart problems is not practical because each country and...
Autores principales: | Menshawi, Alaa, Hassan, Mohammad Mehedi, Allheeib, Nasser, Fortino, Giancarlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921250/ https://www.ncbi.nlm.nih.gov/pubmed/36772430 http://dx.doi.org/10.3390/s23031392 |
Ejemplares similares
-
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI
por: Islam, Md. Nazmul, et al.
Publicado: (2023) -
A Generic Control Architecture for Hybrid Micro-Machines
por: Luo, Xichun, et al.
Publicado: (2018) -
Intelligent Sensory Pen for Aiding in the Diagnosis of Parkinson’s Disease from Dynamic Handwriting Analysis
por: Júnior, Eugênio Peixoto, et al.
Publicado: (2020) -
Thermomass Theory in the Framework of GENERIC
por: Nie, Ben-Dian, et al.
Publicado: (2020) -
A Decision-Level Fusion Method for COVID-19 Patient Health Prediction
por: Gumaei, Abdu, et al.
Publicado: (2022)