Cargando…

Optimal experimental design and estimation for q‐space trajectory imaging

Tensor‐valued diffusion encoding facilitates data analysis by q‐space trajectory imaging. By modeling the diffusion signal of heterogeneous tissues with a diffusion tensor distribution (DTD) and modulating the encoding tensor shape, this novel approach allows disentangling variations in diffusivity...

Descripción completa

Detalles Bibliográficos
Autores principales: Morez, Jan, Szczepankiewicz, Filip, den Dekker, Arnold J., Vanhevel, Floris, Sijbers, Jan, Jeurissen, Ben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921251/
https://www.ncbi.nlm.nih.gov/pubmed/36564927
http://dx.doi.org/10.1002/hbm.26175
_version_ 1784887267455664128
author Morez, Jan
Szczepankiewicz, Filip
den Dekker, Arnold J.
Vanhevel, Floris
Sijbers, Jan
Jeurissen, Ben
author_facet Morez, Jan
Szczepankiewicz, Filip
den Dekker, Arnold J.
Vanhevel, Floris
Sijbers, Jan
Jeurissen, Ben
author_sort Morez, Jan
collection PubMed
description Tensor‐valued diffusion encoding facilitates data analysis by q‐space trajectory imaging. By modeling the diffusion signal of heterogeneous tissues with a diffusion tensor distribution (DTD) and modulating the encoding tensor shape, this novel approach allows disentangling variations in diffusivity from microscopic anisotropy, orientation dispersion, and mixtures of multiple isotropic diffusivities. To facilitate the estimation of the DTD parameters, a parsimonious acquisition scheme coupled with an accurate and precise estimation of the DTD is needed. In this work, we create two precision‐optimized acquisition schemes: one that maximizes the precision of the raw DTD parameters, and another that maximizes the precision of the scalar measures derived from the DTD. The improved precision of these schemes compared to a naïve sampling scheme is demonstrated in both simulations and real data. Furthermore, we show that the weighted linear least squares (WLLS) estimator that uses the squared reciprocal of the noisy signal as weights can be biased, whereas the iteratively WLLS estimator with the squared reciprocal of the predicted signal as weights outperforms the conventional unweighted linear LS and nonlinear LS estimators in terms of accuracy and precision. Finally, we show that the use of appropriate constraints can considerably increase the precision of the estimator with only a limited decrease in accuracy.
format Online
Article
Text
id pubmed-9921251
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-99212512023-02-13 Optimal experimental design and estimation for q‐space trajectory imaging Morez, Jan Szczepankiewicz, Filip den Dekker, Arnold J. Vanhevel, Floris Sijbers, Jan Jeurissen, Ben Hum Brain Mapp Research Articles Tensor‐valued diffusion encoding facilitates data analysis by q‐space trajectory imaging. By modeling the diffusion signal of heterogeneous tissues with a diffusion tensor distribution (DTD) and modulating the encoding tensor shape, this novel approach allows disentangling variations in diffusivity from microscopic anisotropy, orientation dispersion, and mixtures of multiple isotropic diffusivities. To facilitate the estimation of the DTD parameters, a parsimonious acquisition scheme coupled with an accurate and precise estimation of the DTD is needed. In this work, we create two precision‐optimized acquisition schemes: one that maximizes the precision of the raw DTD parameters, and another that maximizes the precision of the scalar measures derived from the DTD. The improved precision of these schemes compared to a naïve sampling scheme is demonstrated in both simulations and real data. Furthermore, we show that the weighted linear least squares (WLLS) estimator that uses the squared reciprocal of the noisy signal as weights can be biased, whereas the iteratively WLLS estimator with the squared reciprocal of the predicted signal as weights outperforms the conventional unweighted linear LS and nonlinear LS estimators in terms of accuracy and precision. Finally, we show that the use of appropriate constraints can considerably increase the precision of the estimator with only a limited decrease in accuracy. John Wiley & Sons, Inc. 2022-12-23 /pmc/articles/PMC9921251/ /pubmed/36564927 http://dx.doi.org/10.1002/hbm.26175 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Morez, Jan
Szczepankiewicz, Filip
den Dekker, Arnold J.
Vanhevel, Floris
Sijbers, Jan
Jeurissen, Ben
Optimal experimental design and estimation for q‐space trajectory imaging
title Optimal experimental design and estimation for q‐space trajectory imaging
title_full Optimal experimental design and estimation for q‐space trajectory imaging
title_fullStr Optimal experimental design and estimation for q‐space trajectory imaging
title_full_unstemmed Optimal experimental design and estimation for q‐space trajectory imaging
title_short Optimal experimental design and estimation for q‐space trajectory imaging
title_sort optimal experimental design and estimation for q‐space trajectory imaging
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921251/
https://www.ncbi.nlm.nih.gov/pubmed/36564927
http://dx.doi.org/10.1002/hbm.26175
work_keys_str_mv AT morezjan optimalexperimentaldesignandestimationforqspacetrajectoryimaging
AT szczepankiewiczfilip optimalexperimentaldesignandestimationforqspacetrajectoryimaging
AT dendekkerarnoldj optimalexperimentaldesignandestimationforqspacetrajectoryimaging
AT vanhevelfloris optimalexperimentaldesignandestimationforqspacetrajectoryimaging
AT sijbersjan optimalexperimentaldesignandestimationforqspacetrajectoryimaging
AT jeurissenben optimalexperimentaldesignandestimationforqspacetrajectoryimaging