Cargando…
A Joint-Parameter Estimation and Bayesian Reconstruction Approach to Low-Dose CT †
Most penalized maximum likelihood methods for tomographic image reconstruction based on Bayes’ law include a freely adjustable hyperparameter to balance the data fidelity term and the prior/penalty term for a specific noise–resolution tradeoff. The hyperparameter is determined empirically via a tria...
Autores principales: | Gao, Yongfeng, Lu, Siming, Shi, Yongyi, Chang, Shaojie, Zhang, Hao, Hou, Wei, Li, Lihong, Liang, Zhengrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921255/ https://www.ncbi.nlm.nih.gov/pubmed/36772417 http://dx.doi.org/10.3390/s23031374 |
Ejemplares similares
-
Bayesian inference: parameter estimation and decisions
por: Harney, Hanns L
Publicado: (2003) -
Bayesian spectrum analysis and parameter estimation
por: Bre3rdorst, G Larry
Publicado: (1988) -
A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning
por: Zhang, Cheng, et al.
Publicado: (2015) -
Energy enhanced tissue texture in spectral computed tomography for lesion classification
por: Gao, Yongfeng, et al.
Publicado: (2019) -
Ultra Low Dose CT Pulmonary Angiography with Iterative Reconstruction
por: Sauter, Andreas, et al.
Publicado: (2016)