Cargando…
Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals
Wearable sensors allow for the objective analysis of gait and motion both in and outside the clinical setting. However, it remains a challenge to apply such systems to highly diverse patient populations, including individuals with lower-limb amputations (LLA) that present with unique gait deviations...
Autores principales: | Ng, Gabriel, Andrysek, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921298/ https://www.ncbi.nlm.nih.gov/pubmed/36772451 http://dx.doi.org/10.3390/s23031412 |
Ejemplares similares
-
Evaluation of at-home physiotherapy: machine-learning prediction with smart watch inertial sensors
por: Boyer, Philip, et al.
Publicado: (2023) -
Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation
por: Alfakir, Abdalrahman, et al.
Publicado: (2022) -
A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network
por: Taborri, Juri, et al.
Publicado: (2014) -
Inertial Sensor-Based Smoother for Gait Analysis
por: Suh, Young Soo
Publicado: (2014) -
Validation of Inertial Sensors to Evaluate Gait Stability
por: Riek, Paul M., et al.
Publicado: (2023)