Cargando…
Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition
The original EEG data collected are the 1D sequence, which ignores spatial topology information; Feature Pyramid Networks (FPN) is better at small dimension target detection and insufficient feature extraction in the scale transformation than CNN. We propose a method of FPN and Long Short-Term Memor...
Autores principales: | Zhang, Xiaodan, Li, Yige, Du, Jinxiang, Zhao, Rui, Xu, Kemeng, Zhang, Lu, She, Yichong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921369/ https://www.ncbi.nlm.nih.gov/pubmed/36772661 http://dx.doi.org/10.3390/s23031622 |
Ejemplares similares
-
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
EEG Feature Extraction and Data Augmentation in Emotion Recognition
por: Kalashami, Mahsa Pourhosein, et al.
Publicado: (2022) -
Improved EEG-based emotion recognition through information enhancement in connectivity feature map
por: Akhand, M. A. H., et al.
Publicado: (2023) -
Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
por: Yin, Zhong, et al.
Publicado: (2017)