Cargando…
Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks
The undeniable computational power of artificial neural networks has granted the scientific community the ability to exploit the available data in ways previously inconceivable. However, deep neural networks require an overwhelming quantity of data in order to interpret the underlying connections be...
Autores principales: | Avgerinos, Christos, Vretos, Nicholas, Daras, Petros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921448/ https://www.ncbi.nlm.nih.gov/pubmed/36772365 http://dx.doi.org/10.3390/s23031325 |
Ejemplares similares
-
Transformer-Based Fire Detection in Videos
por: Mardani, Konstantina, et al.
Publicado: (2023) -
Trainable quantization for Speedy Spiking Neural Networks
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
Empathy: Process of adaptation and change, is it trainable?
por: Srivastava, Kalpana, et al.
Publicado: (2016) -
Thermally trainable dual network hydrogels
por: Hu, Shanming, et al.
Publicado: (2023) -
Issues on Trainability
por: Radak, Zsolt, et al.
Publicado: (2022)