Cargando…

Crosswise Stream of Cu-H(2)O Nanofluid with Micro Rotation Effects: Heat Transfer Analysis

The present study focuses on a crosswise stream of liquid-holding nano-sized particles over an elongating (stretching) surface. Tiny particles of copper are added into base liquid (water). The influence of the micro rotation phenomenon is also considered. By means of appropriate transformations non-...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehmood, Rashid, Tabassum, Rabil, Ali, Mohamed R., Muhammad, Taseer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921452/
https://www.ncbi.nlm.nih.gov/pubmed/36770431
http://dx.doi.org/10.3390/nano13030471
Descripción
Sumario:The present study focuses on a crosswise stream of liquid-holding nano-sized particles over an elongating (stretching) surface. Tiny particles of copper are added into base liquid (water). The influence of the micro rotation phenomenon is also considered. By means of appropriate transformations non-linear coupled ordinary differential equations are attained that govern the flow problem. The Runge–Kutta–Fehlberg scheme, together with the shooting method, is engaged to acquire results numerically. Micropolar coupling parameter, microelements concentration and nanoparticles volume fraction effects are examined over the profiles of velocity, temperature and micro-rotation. Moreover, heat flux and shear stress are computed against pertinent parameters and presented through bar graphs. Outcomes revealed that material constant has increasing effects on normal components of flow velocity; however, it decreasingly influences the tangential velocity, micro-rotation components and temperature profile. Temperature profile appeared to be higher for weak concentration of microelements. It is further noticed that normal velocity profile is higher in magnitude for the case of strong concentration (n = 0) of microelements, whereas tangential velocity profile is higher near the surface for the case of weak concentration (n = 0.5) of microelements. An increase of 3.74% in heat flux is observed when the volume fraction of nanoparticles is increased from 1 to 5%.