Cargando…
Biopolymer Non-Parametric Analysis: A Degradation Study under Accelerated Destructive Tests
The degradation of biopolymers such as polylactic acid (PLA) has been studied for several years; however, the results regarding the mechanism of degradation are not completely understood yet. PLA is easily processed by traditional techniques including injection molding, blow molding, extrusion, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921469/ https://www.ncbi.nlm.nih.gov/pubmed/36771920 http://dx.doi.org/10.3390/polym15030620 |
Sumario: | The degradation of biopolymers such as polylactic acid (PLA) has been studied for several years; however, the results regarding the mechanism of degradation are not completely understood yet. PLA is easily processed by traditional techniques including injection molding, blow molding, extrusion, and thermoforming; in this research, the extrusion and injection molding processes were used to produce PLA samples for accelerated destructive testing. The methodology employed consisted of carrying out material testing under the guidelines of several ASTM standards; this research hypothesized that the effects of UV light, humidity, and temperature exposure have a statistical difference in the PLA degradation rate. The multivariate analysis of non-parametric data is presented as an alternative to multivariate analysis, in which the data do not satisfy the essential assumptions of a regular MANOVA, such as multivariate normality. A package in the R software that allows the user to perform a non-parametric multivariate analysis when necessary was used. This paper presents a study to determine if there is a significant difference in the degradation rate after 2000 h of accelerated degradation of a biopolymer using the multivariate and non-parametric analyses of variance. The combination of the statistical techniques, multivariate analysis of variance and repeated measures, provided information for a better understanding of the degradation path of the biopolymer. |
---|