Cargando…

Multi-Objective Message Routing in Electric and Flying Vehicles Using a Genetics Algorithm

With progressive technological advancements, the time for electric vehicles (EVs) and unmanned aerial vehicles (UAVs) has finally arrived for the masses. However, intelligent transportation systems need to develop appropriate protocols that enable swift predictive communication among these battery-p...

Descripción completa

Detalles Bibliográficos
Autores principales: Alolaiwy, Muhammad, Zohdy, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921489/
https://www.ncbi.nlm.nih.gov/pubmed/36772140
http://dx.doi.org/10.3390/s23031100
Descripción
Sumario:With progressive technological advancements, the time for electric vehicles (EVs) and unmanned aerial vehicles (UAVs) has finally arrived for the masses. However, intelligent transportation systems need to develop appropriate protocols that enable swift predictive communication among these battery-powered devices. In this paper, we highlight the challenges in message routing in a unified paradigm of electric and flying vehicles (EnFVs). We innovate over the existing routing scheme by considering multi-objective EnFVs message routing using a novel modified genetics algorithm. The proposed scheme identifies all possible solutions, outlines the Pareto-front, and considers the optimal solution for the best route. Moreover, the reliability, data rate, and residual energy of vehicles are considered to achieve high communication gains. An exhaustive evaluation of the proposed and three existing schemes using a New York City real geographical trace shows that the proposed scheme outperforms existing solutions and achieves a [Formula: see text] packet delivery ratio, longer connectivity time, shortest average hop distance, and efficient energy consumption.