Cargando…

Performance Enhancement in Powder-Fabricated Cu(2)(ZnSn)Se(4) Solar Cell by Roll Compression

Despite the improved conversion efficiency of Cu(2)(ZnSn)Se(4) (CZTSe) solar cells, their roll-to-roll fabrication nonetheless leads to low performance. The selenization time and temperature are typically considered major parameters for a powder-based CZTSe film; meanwhile, the importance of the den...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jaehyun, Nam, Hyobin, Song, Bong-Geun, Burak, Darya, Jang, Ho Seong, Lee, Seung Yong, Cho, So-Hye, Park, Jong-Ku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921508/
https://www.ncbi.nlm.nih.gov/pubmed/36770083
http://dx.doi.org/10.3390/ma16031076
Descripción
Sumario:Despite the improved conversion efficiency of Cu(2)(ZnSn)Se(4) (CZTSe) solar cells, their roll-to-roll fabrication nonetheless leads to low performance. The selenization time and temperature are typically considered major parameters for a powder-based CZTSe film; meanwhile, the importance of the densification during the roll-to-roll process is often overlooked. The densification process is related to the porosity of the light-absorbing layer, where high porosity lowers cell performance. In this study, we fabricated a dense CZTSe absorber layer as a method of controlling the compression of a powder precursor (Cu(1.7)(Zn(1.2)Sn(1.0))S(4.0) (CZTS)) during the roll-press process. The increased particle packing density of the CZTS layer was crucial in sintering the powder layer into a dense film and preventing severe selenization of the Mo back electrode. The pressed absorber layer of the CZTSe solar cell exhibited a more uniform chemical composition determined using dynamic secondary ion mass spectrometry (SIMS). Under the AM 1.5G illumination condition, the power conversion efficiency of the pressed solar cell was 6.82%, while the unpressed one was 4.90%.