Cargando…
Performance Enhancement in Powder-Fabricated Cu(2)(ZnSn)Se(4) Solar Cell by Roll Compression
Despite the improved conversion efficiency of Cu(2)(ZnSn)Se(4) (CZTSe) solar cells, their roll-to-roll fabrication nonetheless leads to low performance. The selenization time and temperature are typically considered major parameters for a powder-based CZTSe film; meanwhile, the importance of the den...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921508/ https://www.ncbi.nlm.nih.gov/pubmed/36770083 http://dx.doi.org/10.3390/ma16031076 |
Sumario: | Despite the improved conversion efficiency of Cu(2)(ZnSn)Se(4) (CZTSe) solar cells, their roll-to-roll fabrication nonetheless leads to low performance. The selenization time and temperature are typically considered major parameters for a powder-based CZTSe film; meanwhile, the importance of the densification during the roll-to-roll process is often overlooked. The densification process is related to the porosity of the light-absorbing layer, where high porosity lowers cell performance. In this study, we fabricated a dense CZTSe absorber layer as a method of controlling the compression of a powder precursor (Cu(1.7)(Zn(1.2)Sn(1.0))S(4.0) (CZTS)) during the roll-press process. The increased particle packing density of the CZTS layer was crucial in sintering the powder layer into a dense film and preventing severe selenization of the Mo back electrode. The pressed absorber layer of the CZTSe solar cell exhibited a more uniform chemical composition determined using dynamic secondary ion mass spectrometry (SIMS). Under the AM 1.5G illumination condition, the power conversion efficiency of the pressed solar cell was 6.82%, while the unpressed one was 4.90%. |
---|