Cargando…
A Study on the Impact of Integrating Reinforcement Learning for Channel Prediction and Power Allocation Scheme in MISO-NOMA System
In this study, the influence of adopting Reinforcement Learning (RL) to predict the channel parameters for user devices in a Power Domain Multi-Input Single-Output Non-Orthogonal Multiple Access (MISO-NOMA) system is inspected. In the channel prediction-based RL approach, the Q-learning algorithm is...
Autores principales: | Gaballa, Mohamed, Abbod, Maysam, Aldallal, Ammar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921540/ https://www.ncbi.nlm.nih.gov/pubmed/36772422 http://dx.doi.org/10.3390/s23031383 |
Ejemplares similares
-
Simplified Deep Reinforcement Learning Approach for Channel Prediction in Power Domain NOMA System
por: Gaballa, Mohamed, et al.
Publicado: (2023) -
Investigating the Combination of Deep Learning for Channel Estimation and Power Optimization in a Non-Orthogonal Multiple Access System
por: Gaballa, Mohamed, et al.
Publicado: (2022) -
Distributed Beamforming and Power Allocation for Heterogeneous Networks with MISO Interference Channel
por: Lee, Kisong
Publicado: (2021) -
Reinforcement Learning-Based Joint User Pairing and Power Allocation in MIMO-NOMA Systems
por: Lee, Jaehee, et al.
Publicado: (2020) -
Performance Analysis and Beamforming Design of a Secure Cooperative MISO-NOMA Network
por: Ghous, Mujtaba, et al.
Publicado: (2021)