Cargando…
An Insight of Deep Learning Based Demand Forecasting in Smart Grids
Smart grids are able to forecast customers’ consumption patterns, i.e., their energy demand, and consequently electricity can be transmitted after taking into account the expected demand. To face today’s demand forecasting challenges, where the data generated by smart grids is huge, modern data-driv...
Autores principales: | Aguiar-Pérez, Javier Manuel, Pérez-Juárez, María Ángeles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921606/ https://www.ncbi.nlm.nih.gov/pubmed/36772509 http://dx.doi.org/10.3390/s23031467 |
Ejemplares similares
-
Demand response in smart grids
por: Du, Pengwei, et al.
Publicado: (2019) -
A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework
por: Hernández, Luis, et al.
Publicado: (2012) -
Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids
por: Pop, Claudia, et al.
Publicado: (2018) -
Deterioration of Electrical Load Forecasting Models in a Smart Grid Environment
por: Azeem, Abdul, et al.
Publicado: (2022) -
Sensorless PV Power Forecasting in Grid-Connected Buildings through Deep Learning
por: Son, Junseo, et al.
Publicado: (2018)