Cargando…
Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture
In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921607/ https://www.ncbi.nlm.nih.gov/pubmed/36770900 http://dx.doi.org/10.3390/molecules28031233 |
_version_ | 1784887352185847808 |
---|---|
author | Quah, Yixian Tong, Shi-Ruo Bojarska, Joanna Giller, Katrin Tan, Sheri-Ann Ziora, Zyta Maria Esatbeyoglu, Tuba Chai, Tsun-Thai |
author_facet | Quah, Yixian Tong, Shi-Ruo Bojarska, Joanna Giller, Katrin Tan, Sheri-Ann Ziora, Zyta Maria Esatbeyoglu, Tuba Chai, Tsun-Thai |
author_sort | Quah, Yixian |
collection | PubMed |
description | In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled. |
format | Online Article Text |
id | pubmed-9921607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99216072023-02-12 Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture Quah, Yixian Tong, Shi-Ruo Bojarska, Joanna Giller, Katrin Tan, Sheri-Ann Ziora, Zyta Maria Esatbeyoglu, Tuba Chai, Tsun-Thai Molecules Review In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled. MDPI 2023-01-27 /pmc/articles/PMC9921607/ /pubmed/36770900 http://dx.doi.org/10.3390/molecules28031233 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Quah, Yixian Tong, Shi-Ruo Bojarska, Joanna Giller, Katrin Tan, Sheri-Ann Ziora, Zyta Maria Esatbeyoglu, Tuba Chai, Tsun-Thai Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture |
title | Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture |
title_full | Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture |
title_fullStr | Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture |
title_full_unstemmed | Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture |
title_short | Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture |
title_sort | bioactive peptide discovery from edible insects for potential applications in human health and agriculture |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921607/ https://www.ncbi.nlm.nih.gov/pubmed/36770900 http://dx.doi.org/10.3390/molecules28031233 |
work_keys_str_mv | AT quahyixian bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT tongshiruo bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT bojarskajoanna bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT gillerkatrin bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT tansheriann bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT ziorazytamaria bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT esatbeyoglutuba bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture AT chaitsunthai bioactivepeptidediscoveryfromedibleinsectsforpotentialapplicationsinhumanhealthandagriculture |