Cargando…
A Two-Step Feature Selection Radiomic Approach to Predict Molecular Outcomes in Breast Cancer
Breast Cancer (BC) is the most common cancer among women worldwide and is characterized by intra- and inter-tumor heterogeneity that strongly contributes towards its poor prognosis. The Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Ki67 anti...
Autores principales: | Brancato, Valentina, Brancati, Nadia, Esposito, Giusy, La Rosa, Massimo, Cavaliere, Carlo, Allarà, Ciro, Romeo, Valeria, De Pietro, Giuseppe, Salvatore, Marco, Aiello, Marco, Sangiovanni, Mara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921618/ https://www.ncbi.nlm.nih.gov/pubmed/36772592 http://dx.doi.org/10.3390/s23031552 |
Ejemplares similares
-
The relationship between radiomics and pathomics in Glioblastoma patients: Preliminary results from a cross-scale association study
por: Brancato, Valentina, et al.
Publicado: (2022) -
MRI-Based Radiomic Features Help Identify Lesions and Predict Histopathological Grade of Hepatocellular Carcinoma
por: Brancato, Valentina, et al.
Publicado: (2022) -
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis
por: Brancato, Valentina, et al.
Publicado: (2022) -
Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions
por: Brancato, Valentina, et al.
Publicado: (2021) -
A customized anthropomorphic 3D-printed phantom to reproducibility assessment in computed tomography: an oncological case study
por: Cavaliere, Carlo, et al.
Publicado: (2023)