Cargando…
Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM
In this work, we identify two issues that can significantly affect the accuracy of AFM measurements of the diameter of single-wall carbon nanotubes (SWCNTs) and propose a protocol that reduces errors associated with these issues. Measurements of the nanotube height under different applied forces dem...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921789/ https://www.ncbi.nlm.nih.gov/pubmed/36770438 http://dx.doi.org/10.3390/nano13030477 |
Sumario: | In this work, we identify two issues that can significantly affect the accuracy of AFM measurements of the diameter of single-wall carbon nanotubes (SWCNTs) and propose a protocol that reduces errors associated with these issues. Measurements of the nanotube height under different applied forces demonstrate that even moderate forces significantly compress several different types of SWCNTs, leading to errors in measured diameters that must be minimized and/or corrected. Substrate and nanotube roughness also make major contributions to the uncertainty associated with the extraction of diameters from measured images. An analysis method has been developed that reduces the uncertainties associated with this extraction to <0.1 nm. This method is then applied to measure the diameter distribution of individual highly semiconducting enriched nanotubes in networks prepared from polyfluorene/SWCNT dispersions. Good agreement is obtained between diameter distributions for the same sample measured with two different commercial AFM instruments, indicating the reproducibility of the method. The reduced uncertainty in diameter measurements based on this method facilitates: (1) determination of the thickness of the polymer layer wrapping the nanotubes and (2) measurement of nanotube compression at tube–tube junctions within the network. |
---|