Cargando…
Image-Based Detection of Modifications in Assembled PCBs with Deep Convolutional Autoencoders
In this paper, we introduce a one-class learning approach for detecting modifications in assembled printed circuit boards (PCBs) based on photographs taken without tight control over perspective and illumination conditions. Anomaly detection and segmentation are essential for several applications, w...
Autores principales: | Candido de Oliveira, Diulhio, Nassu, Bogdan Tomoyuki, Wehrmeister, Marco Aurelio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921794/ https://www.ncbi.nlm.nih.gov/pubmed/36772392 http://dx.doi.org/10.3390/s23031353 |
Ejemplares similares
-
Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV
por: de Oliveira, Diulhio Candido, et al.
Publicado: (2018) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022) -
Orthogonal Local Image Descriptors with Convolutional Autoencoders
por: Roman-Rangel, Edgar, et al.
Publicado: (2020) -
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022) -
Convolutional Autoencoder-Based Flaw Detection for Steel Wire Ropes
por: Zhang, Guoyong, et al.
Publicado: (2020)