Cargando…
Quantitative Identification Method for Glass Panel Defects Using Microwave Detection Based on the CSAPSO-BP Neural Network
To address the problem of the quantitative identification of glass panel surface defects, a new method combining the chaotic simulated annealing particle swarm algorithm (CSAPSO) and the BP neural network is proposed for the quantitative evaluation of microwave detection signals of glass panel defec...
Autores principales: | Fang, Jun, Deng, Zhiyang, Tu, Jun, Song, Xiaochun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921799/ https://www.ncbi.nlm.nih.gov/pubmed/36772137 http://dx.doi.org/10.3390/s23031097 |
Ejemplares similares
-
Ultrasonic based concrete defects identification via wavelet packet transform and GA-BP neural network
por: Hu, Tianyu, et al.
Publicado: (2021) -
Visual Quantitative Detection of Delamination Defects in GFRP via Microwave
por: Yang, Xihan, et al.
Publicado: (2023) -
Quantitative Visualization of Buried Defects in GFRP via Microwave Reflectometry
por: Wang, Ruonan, et al.
Publicado: (2023) -
Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels
por: Tu, Jun, et al.
Publicado: (2023) -
Channel Prediction Based on BP Neural Network for Backscatter Communication Networks
por: Zhao, Jumin, et al.
Publicado: (2020)