Cargando…

A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends

Because of their high filler loadings, commercial-grade clean flame-retardant materials have unstable mechanical properties. To address this issue, intumescent polymers can be used to develop clean flame retardants with very low levels of smoke and toxicity generation. An intumescent flame retardant...

Descripción completa

Detalles Bibliográficos
Autores principales: Alosime, Eid M., Basfar, Ahmed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921819/
https://www.ncbi.nlm.nih.gov/pubmed/36770690
http://dx.doi.org/10.3390/molecules28031023
_version_ 1784887403224236032
author Alosime, Eid M.
Basfar, Ahmed A.
author_facet Alosime, Eid M.
Basfar, Ahmed A.
author_sort Alosime, Eid M.
collection PubMed
description Because of their high filler loadings, commercial-grade clean flame-retardant materials have unstable mechanical properties. To address this issue, intumescent polymers can be used to develop clean flame retardants with very low levels of smoke and toxicity generation. An intumescent flame retardant (IFR) system composed of red phosphorus (RP), zinc borate (ZB), and a terpolymer of ethylene, butyl acrylate, and maleic anhydride (EBM) was used to prepare EVA (ethylene-vinyl acetate) and EVA/LLDPE (linear low-density polyethylene) composites; their mechanical and flammability properties were systematically investigated. The limiting oxygen index (LOI) of the EVA/LLDPE (as base material) composite containing RP and ZB mixed with nonhalogenated flame retardant, mainly magnesium hydroxide (MH) and coadditives, including processing aids and thermal stabilizers, was established. RP was found to have little effect on the tensile properties of EVA/LLDPE 118W/120 phr flame-retardant (MH + RP) composites. There was a minute difference in the effective trend of RP between tensile strength and elongation at break. Following the addition of ZB, the elongation at break of the composites gradually decreased with increasing RP content and then leveled off when the RP content was over 10 phr. Mechanical properties (elongation at break and tensile strength) can be best maintained at below 10 phr content of RP. The mechanical properties decreased with lower amounts of EBM content. In addition, flame retardancy increased when the EBM content decreased. The findings further revealed that MH and RP have poor compatibility, yielding poor mechanical properties. The LOI greatly increased with RP content, even though the total content of flame retardants (main + intumescent flame retardant) was the same in all formulations. Only over 5 phr RP content formulations passed V-0 of the UL-94 test. When under 5 phr, the RP content formulations did not pass V-0 of the UL-94 test.
format Online
Article
Text
id pubmed-9921819
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99218192023-02-12 A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends Alosime, Eid M. Basfar, Ahmed A. Molecules Article Because of their high filler loadings, commercial-grade clean flame-retardant materials have unstable mechanical properties. To address this issue, intumescent polymers can be used to develop clean flame retardants with very low levels of smoke and toxicity generation. An intumescent flame retardant (IFR) system composed of red phosphorus (RP), zinc borate (ZB), and a terpolymer of ethylene, butyl acrylate, and maleic anhydride (EBM) was used to prepare EVA (ethylene-vinyl acetate) and EVA/LLDPE (linear low-density polyethylene) composites; their mechanical and flammability properties were systematically investigated. The limiting oxygen index (LOI) of the EVA/LLDPE (as base material) composite containing RP and ZB mixed with nonhalogenated flame retardant, mainly magnesium hydroxide (MH) and coadditives, including processing aids and thermal stabilizers, was established. RP was found to have little effect on the tensile properties of EVA/LLDPE 118W/120 phr flame-retardant (MH + RP) composites. There was a minute difference in the effective trend of RP between tensile strength and elongation at break. Following the addition of ZB, the elongation at break of the composites gradually decreased with increasing RP content and then leveled off when the RP content was over 10 phr. Mechanical properties (elongation at break and tensile strength) can be best maintained at below 10 phr content of RP. The mechanical properties decreased with lower amounts of EBM content. In addition, flame retardancy increased when the EBM content decreased. The findings further revealed that MH and RP have poor compatibility, yielding poor mechanical properties. The LOI greatly increased with RP content, even though the total content of flame retardants (main + intumescent flame retardant) was the same in all formulations. Only over 5 phr RP content formulations passed V-0 of the UL-94 test. When under 5 phr, the RP content formulations did not pass V-0 of the UL-94 test. MDPI 2023-01-19 /pmc/articles/PMC9921819/ /pubmed/36770690 http://dx.doi.org/10.3390/molecules28031023 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alosime, Eid M.
Basfar, Ahmed A.
A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
title A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
title_full A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
title_fullStr A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
title_full_unstemmed A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
title_short A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
title_sort systematic investigation on the influence of intumescent flame retardants on the properties of ethylene vinyl acetate (eva)/liner low density polyethylene (lldpe) blends
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921819/
https://www.ncbi.nlm.nih.gov/pubmed/36770690
http://dx.doi.org/10.3390/molecules28031023
work_keys_str_mv AT alosimeeidm asystematicinvestigationontheinfluenceofintumescentflameretardantsonthepropertiesofethylenevinylacetateevalinerlowdensitypolyethylenelldpeblends
AT basfarahmeda asystematicinvestigationontheinfluenceofintumescentflameretardantsonthepropertiesofethylenevinylacetateevalinerlowdensitypolyethylenelldpeblends
AT alosimeeidm systematicinvestigationontheinfluenceofintumescentflameretardantsonthepropertiesofethylenevinylacetateevalinerlowdensitypolyethylenelldpeblends
AT basfarahmeda systematicinvestigationontheinfluenceofintumescentflameretardantsonthepropertiesofethylenevinylacetateevalinerlowdensitypolyethylenelldpeblends